A drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation
نویسندگان
چکیده
The suppressor of Hairy wing (su(Hw)) protein inhibits the function of transcriptional enhancers located distally from the promoter with respect to the location of su(Hw)-binding sites. This polarity is due to the ability of the su(Hw)-binding region to form a chromatin insulator. Mutations in modifier of mdg4 (mod(mdg4)) enhance the effect of su(Hw) by inhibiting the function of enhancers located on both sides of the su(Hw)-binding region. This inhibition results in a variegated expression pattern, and mutations in mod(mdg4) act as classical enhancers of position-effect variegation. The mod(mdg4) and su(Hw) proteins interact with each other. The mod(mdg4) protein controls the nature of the repressive effect of su(Hw): in the absence of mod(mdg4) protein, su(Hw) exerts a bidirectional silencing effect, whereas in the presence of mod(mdg4), the silencing effect is transformed into unidirectional repression.
منابع مشابه
The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators.
In Drosophila modifying mutations of position-effect variegation have been successfully used to genetically dissect chromatin components. The enhancer of position-effect variegation E(var)3-93D [formerly E-var(3)3] encodes proteins containing a domain common to the transcriptional regulators tramtrack and the products of the Broad complex. It interacts with a number of chromatin genes that supp...
متن کاملCharacterization of BEAF mutations isolated by homologous recombination in Drosophila.
The Drosophila BEAF-32A and BEAF-32B proteins bind to the scs' insulator and to hundreds of other sites on Drosophila chromosomes. These two proteins are encoded by the same gene. We used ends-in homologous recombination to generate the null BEAF(AB-KO) allele and also isolated the BEAF(A-KO) allele that eliminates production of only the BEAF-32A protein. We find that the BEAF proteins together...
متن کاملpitkin(D), a novel gain-of-function enhancer of position-effect variegation, affects chromatin regulation during oogenesis and early embryogenesis in Drosophila.
The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkin(Dominant) (ptn(D)), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in varie...
متن کاملA new enhancer of position-effect variegation in Drosophila melanogaster encodes a putative RNA helicase that binds chromosomes and is regulated by the cell cycle.
In Drosophila melanogaster, position-effect variegation of the white gene has been a useful phenomenon by which to study chromosome structure and the genes that modify it. We have identified a new enhancer of variegation locus, Dmrnahel (hel). Deletion of mutation of hel enhances white variegation, and this can be reversed by a transformed copy of hel+. In the presence of two endogenous copies,...
متن کاملThe gypsy insulator of Drosophila affects chromatin structure in a directional manner.
Chromatin insulators are thought to regulate gene expression by establishing higher-order domains of chromatin organization, although the specific mechanisms by which these sequences affect enhancer-promoter interactions are not well understood. Here we show that the gypsy insulator of Drosophila can affect chromatin structure. The insulator itself contains several DNase I hypersensitive sites ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 82 شماره
صفحات -
تاریخ انتشار 1995